If ff is a convex function, 𝒮\mathcal{S} is a convex set and T≥R2G2ϵ2T \geq \frac{R^2 G^2}{\epsilon^2}, then f(𝐱̂)≤f(𝐱*)+ϵf(\hat{\mathbf{x}}) \leq f(\mathbf{x}^*) + \epsilon.
See: Gradient descent convergence bound